Birzeit University	Faculty of Engineering	Dep. of Electrical Engineering
Probability ENEE 331	Problem Set (2)	Single Random Variables

P1) Let X be a random variable with mean $\quad E\{X\}=11 / 12$, and probability density function Where a, b constants
a) What is the value of a, b ?
b) What is the cumulative distribution function of X ?

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
a x^{2}+b & \text { for } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \left.1=\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(a x^{2}+b\right) d x=\frac{a x^{3}}{3}+b x\right]_{0}^{1}=\frac{a}{3}+b-0=\frac{a}{3}+b \\
& a=3-3 b \\
& \left.\frac{11}{12}=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x\left(a x^{2}+b\right) d x=\frac{a x^{4}}{4}+\frac{b x^{2}}{2}\right]_{0}^{1}=\frac{a}{4}+\frac{b}{2} \\
& a=-2 b+\frac{11}{3} \\
& b=\frac{-2}{3}, a=5 \\
& \left.\quad F_{x}(X \leq x)=\int_{0}^{x}\left(5 x^{2}-\frac{2}{3}\right) d x=\frac{5 x^{3}}{3}-\frac{x}{3}\right]_{0}^{x}=\frac{5 x^{3}-2 x}{3}
\end{aligned}
$$

P2) If you reach bus stop at 11 o'clock, knowing that the bus will arrive at some time uniformly distributed between 11 and 11:30.
a) What is the probability that you will have to wait longer than 5 minutes?
b) If at 11:15 the bus has not yet arrived, what is the probability that you will have to what at least an additional 10 minutes?

Uniformly distributed a)

$$
\begin{aligned}
& P(X \leq x)=\frac{x}{b-a} \\
& P(X>5)=1-P(X \leq 5)=1-\frac{5}{30-0}=\frac{5}{6}
\end{aligned}
$$

b) If at 11:15 the bus has not yet arrived, what is the probability that you will have to what at least an additional 10 minutes

$$
P(X \geq(15+10) \mid X \geq 15)=\frac{P(X \geq 25 \cap X \geq 15)}{P(X \geq 15)}=\frac{P(X \geq 25)}{P(X \geq 15)}=\frac{1-\frac{25}{30}}{1-\frac{15}{30}}=\frac{1}{3}
$$

P3) Let X be a continuous random variable that has the following probability density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
2 x & 0<\mathrm{x}<1 \\
0 & \text { Elsewhere }
\end{array}\right.
$$

a) Find the mean and variance of X.
b) Find and plot the cumulative distribution function of X .
c) What is $\mathrm{P}(0.3<\mathrm{X}<0.6)$?
d) Let $\mathrm{Y}=1 / \mathrm{X}$ compute $\mathrm{E}(1 / \mathrm{X})$.
a) Find the mean and variance of X .

$$
\begin{aligned}
& \mu_{x}=E(x)=\int_{-\infty}^{\infty} x f_{x}(x) d x=\int_{0}^{1} 2 x^{2} d x=\frac{2}{3} \\
& \sigma_{x}^{2}=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f_{x}(x) d x=\int_{0}^{1} 2 x\left(x-\frac{2}{3}\right)^{2} d x=\frac{2 x^{4}}{4}-\frac{8}{9} x^{3}+\left.\frac{4}{9} x^{2}\right|_{0} ^{1}=\frac{1}{18}
\end{aligned}
$$

b) Find and plot the cumulative distribution function of X .

$$
\left.F_{x}(X \leq x)=\int_{0}^{x} 2 x d x=x^{2}\right]_{0}^{x}=x^{2}
$$

c) What is $\mathrm{P}(0.3<\mathrm{X}<0.6)$?

$$
\begin{aligned}
& P(0.3<\mathrm{X}<0.6)=F_{x}(0.6)-F_{x}(0.3)=0.6^{2}-0.3^{2}=0.27 \\
& \text { or } \left.\int_{0.3}^{0.6} 2 x d x=x^{2}\right]_{0.3}^{0.6}
\end{aligned}
$$

d) Let $Y=1 / X$ compute $E(1 / X)$.

$$
E\left(\frac{1}{x}\right)=\int_{-\infty}^{\infty} \frac{1}{x} f_{x}(x) d x=\int_{0}^{1} \frac{1}{x}(2 x) d x=\left.2 x\right|_{0} ^{1}=2
$$

P4) Given a random variable X having a normal distribution with $\mu_{x}=50$ and $\sigma_{x}=10$. A new Random Variable $Y=X^{2}$
a) find the probability that X is less than 50

$$
P(\mathrm{X}<50)=\Phi\left(\frac{50-50}{10}\right)=0.5
$$

b) find the probability that X is between 45 and 62

$$
P(45<\mathrm{X}<62)=\Phi\left(\frac{62-50}{10}\right)-\Phi\left(\frac{45-50}{10}\right)=0.7580-0.3085=0.4495
$$

c) find the mean of Y

$$
\begin{aligned}
& \sigma_{x}^{2}=100=E\left(x^{2}\right)-\mu_{x}^{2}=E\left(x^{2}\right)-50^{2} \\
& E\left(x^{2}\right)=2600
\end{aligned}
$$

d) find the probaility density function of Y .

$$
f_{y}(y)=2 \frac{f_{x}(x)}{|d x / d y|}=\frac{2}{2 x} \frac{e^{\frac{-x^{2}}{2}}}{\sqrt{2 \pi}}=\frac{e^{\frac{-y}{2}}}{\sqrt{2 \pi y}} ; y \geq 0
$$

P5) Bits are sent over a communications channel in packets of 12 . If the probability of a bit being corrupted over this channel is 0.1 and such errors are independent, what is the probability that no more than 2 bits in a packet are corrupted?
a) If 6 packets are sent over the channel, what is the probability that at least one packet will contain 3 or more corrupted bits?

$$
P(\mathrm{X} \leq 2)=\sum_{0}^{2}\binom{\mathrm{n}}{\mathrm{x}_{\mathrm{i}}} P^{x}(1-P)^{n-x}=0.282+0.377+0.23=0.889
$$

b) Let X denote the number of packets containing 3 or more corrupted bits. What is the probability that X will exceed its mean by more than 2 standard deviations?

$$
\begin{aligned}
& P(\mathrm{X}>3)=1-P(\mathrm{X} \leq 2)=1-0.889=0.111 \\
& \mu_{\mathrm{x}}=n p=6^{*} 0.111=0.666 \\
& \sigma_{\mathrm{x}}^{2}=n p(1-p)=0.77^{2} \\
& P\left(\mathrm{X}-\mu_{\mathrm{x}}>2 \sigma_{\mathrm{x}}\right)=P(X>2.2)=P(\mathrm{X} \geq 3)=1-P(\mathrm{X} \leq 2)=\sum_{0}^{2}\binom{\mathrm{n}}{\mathrm{x}_{\mathrm{i}}} P^{x}(1-P)^{n-x} \\
& =1-\sum_{0}^{2}\binom{12}{\mathrm{x}_{\mathrm{i}}} 0.111^{x}(0.889)^{12-x}=0.009
\end{aligned}
$$

P6) Suppose that the lifetime X of a tower, measured in years, is described by an exponential distribution with mean equals to 25 years

$$
f_{x}(x)=\left\{\begin{array}{cc}
\frac{1}{25} e^{-x / 25} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

If three towers, operated independently, were erected at the same time, what is the probability that at least two will still stand after 35 years.
Solution
Exponential distribution $\quad \lambda e^{-\lambda x}$
$P(X \leq x)=1-e^{-\lambda x}=1-e^{-\frac{x}{25}}$
$\mu_{\mathrm{x}}=E\{X\}=\frac{1}{\lambda}=25$

The probability that a given tower still stands after 35 years is

$$
P(X>35)=1-P(X \leq 35)=1-1+e^{-\frac{35}{25}}=e^{-1.4}
$$

Finally, we use the binomial distribution with $\mathrm{n}=3$ trials, success probability $\mathrm{p}=\mathrm{e}^{\wedge}(-1.4), \mathrm{k}>=2$ successes. The probability that at least 2 will still stand after 35 years is

$$
\begin{aligned}
& P(\mathrm{X} \geq 2)=\sum_{2}^{3}\binom{\mathrm{n}}{\mathrm{x}_{\mathrm{i}}} P^{x}(1-P)^{n-x}=\sum_{2}^{3}\binom{3}{\mathrm{x}_{\mathrm{i}}} e^{-1.4^{x}}\left(1-e^{-1.4}\right)^{3-x} \\
& =3 e^{-2^{*} 1.4}\left(1-e^{-1.4}\right)^{1}+e^{-3^{*} 1.4}=0.1524
\end{aligned}
$$

