Birzeit University Faculty of Engineering Dep. of Electrical Engineering
Probability ENEE 331 Problem Set (2) Single Random Variables

P1) Let X be a random variable with mean E{X}=1112 and probability density function
Where a,b constants

a) What is the value of a,b?

b) What is the cumulative distribution function of X?
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P2) If you reach bus stop at 11 o’clock, knowing that the bus will arrive at some time
uniformly distributed between 11 and 11:30.
a) What is the probability that you will have to wait longer than 5 minutes?
b) Ifat11:15 the bus has not yet arrived, what is the probability that you will have to what
at least an additional 10 minutes?
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b) If at 11:15 the bus has not yet arrived, what is the probability that you will have to what at

least an additional 10 minutes
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P3) Let X be a continuous random variable that has the following probability density function

Sx(x)= { 0 Elsewhere

a) Find the mean and variance of X.
b) Find and plot the cumulative distribution function of X.
¢) Whatis P(0.3 <X <0.6)?
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d) LetY=1/X compute E(1/X).
a) Find the mean and variance of X.
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b) Find and plot the cumulative distribution function of X.

FX(XSx)=;|£2xdx =x2]3 =x’
0

¢) Whatis P(0.3 <X < 0.6)?
P(0.3<X<0.6)=F.(0.6)— F.(0.3)=0.6>—0.3% = 0.27
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d) LetY=1/X compute E(1/X).
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P4) Given a random variable X having a normal distribution with x, = 50 and o, = 10. A new
Random Variable v = x?
a) find the probability that X is less than 50

P(X <50) —c1>(50 50) 0.5

b) find the probablhty that X is between 45 and 62

P45 < X <62) = (2 050) (451 30, _ 0.7580 - 03085 = 0.4495

¢) find the mean of Y

ol =100 = E(x*)—u’ = E(x*)- 507
E(x*)=2600

d) find the probaility density function of Y.
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P5) Bits are sent over a communications channel in packets of 12. If the probability of a bit
being corrupted over this channel is 0.1 and such errors are independent, what is the probability
that no more than 2 bits in a packet are corrupted?
a) If 6 packets are sent over the channel, what is the probability that at least one packet
will contain 3 or more corrupted bits?

P(X<2)= Zzl (;1 P (1-P)"™ =0.282+0.377 +0.23 = 0.889
b) Let X denote tli)e nulmber of packets containing 3 or more corrupted bits. What is the
probability that X will exceed its mean by more than 2 standard deviations?
P(X>3)=1-P(X<£2)=1-0.889 =0.111
u, =np=6%0.111=0.666
O'f =np(1-p)=0.77*

P(X-u, >20 )=P(X>2.2)=P(XZ3)=1—P(XS2)=22:(H)PX(1—P)’H
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P6) Suppose that the lifetime X of a tower, measured in years, is described by an exponential
distribution with mean equals to 25 years
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If three towers, operated independently, were erected at the same time, what is the probability
that at least two will still stand after 35 years.

Solution

Exponential distribution Qe ™

X

P(X<x)=l-e™=1-e?
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The probability that a given tower still stands after 35 years is
35

P(X >35)=1-P(X <35)=1—-1+e ¥ =¢

Finally, we use the binomial distribution with n=3 trials, success probability p=e"(-1.4), k>=2
successes. The probability that at least 2 will still stand after 35 years is

: 3 3 x 1.4\3-x
P(X22)=Z(;)PX(I—P)”"” =Z(X_)e'l‘4 (I=e"")

=3¢ (1) +e714 =0.1524
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